According to the linear model of microarray data analysis, triggering receptor expressed on myeloid cells 1 (TREM1) has been shown to have a significantly different expression profile between intervertebral disc degeneration (IDD) samples and associated control samples. The purpose of the present study was to explore the probable role and underlying mechanism of TREM1 in IDD. To accomplish this, an in vitro model of IDD was established by using IL-1β to stimulate human nucleus pulposus cells (NPCs). After the level of TREM1 had been determined, its functions in terms of the viability of the NPCs, extracellular matrix (ECM) degradation, inflammation, apoptosis and endoplasmic reticulum stress (ERS) were assessed. The downstream target of TREM1 was predicted to be Toll-like receptor-4 (TLR-4) and its roles were then studied, incorporating experiments featuring an ERS agonist. IL-1β was found to elevate the level of TREM1 in NPCs. TREM1 knockdown reversed the observed effects of IL-1β on cell viability, ECM degradation, inflammation, apoptosis of NPCs, ERS and TLR4/NF-κB signaling. Subsequently, the TLR4 and ERS agonists were found to reverse the effect of TREM1 knockdown on NPCs, indicating that the TLR4/NF-κB signaling pathway and ERS were responsible for mediating the regulation of TREM1. In conclusion, the present study showed that TREM1 knockdown blocked the TLR4/NF-κB signaling pathway, inhibited ERS and reduced the levels of ECM degradation and apoptosis of NPCs induced by IL-1β.
Knockdown of triggering receptor expressed on myeloid cells 1 (TREM1) inhibits endoplasmic reticulum stress and reduces extracellular matrix degradation and the apoptosis of human nucleus pulposus cells
敲低髓系细胞触发受体 1 (TREM1) 可抑制内质网应激并减少细胞外基质降解和人髓核细胞凋亡
阅读:4
作者:Ji Zhang, Haoran Jiang, Min Li, Lixiang Ding
| 期刊: | Experimental and Therapeutic Medicine | 影响因子: | 2.300 |
| 时间: | 2022 | 起止号: | 2022 Jul 29;24(4):607. |
| doi: | 10.3892/etm.2022.11544 | 种属: | Human |
| 研究方向: | 信号转导、细胞生物学 | 细胞类型: | 其它细胞 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
