Rapid Detection of Direct Compound Toxicity and Trailing Detection of Indirect Cell Metabolite Toxicity in a 96-Well Fluidic Culture Device for Cell-Based Screening Environments: Tactics in Six Sigma Quality Control Charts

在基于细胞的筛选环境中,在 96 孔流体培养装置中快速检测直接化合物毒性并跟踪检测间接细胞代谢物毒性:六西格玛质量控制图中的策略

阅读:8
作者:Bob Lubamba, Timothy Jensen, Randall McClelland

Abstract

Microfluidic screening tools, in vitro, evolve amid varied scientific disciplines. One emergent technique, simultaneously assessing cell toxicity from a primary compound and ensuing cell-generated metabolites (dual-toxicity screening), entails in-line systems having sequentially aligned culture chambers. To explore dual-tox screens, we probe the dissemination of nutrients involving 1-way transport with upstream compound dosing, midstream cascading flows, and downstream cessation. Distribution of flow gives rise to broad concentration ranges of dosing compound (0→ICcompound100) and wide-ranging concentration ranges of generated cell metabolites (0→ICmetabolites100). Innately, single-pass unidirectional flow retains 1st pass informative traits across the network, composed of nine interconnected culture wells, preserving both compound and cell-secreted byproducts as data indicators in each adjacent culture chamber. Thereafter, to assess effective compound hepatotoxicity (0→ECcompound100) and simultaneously classify for cell-metabolite toxicity (0→ECmetabolite100), we reveal utility by analyzing culture viability against ramping exposures of acetaminophen (APAP) and nefazodone (NEF), compounds of hepatic significance. We then discern metabolite generation with an emphasis on amplification across μchannel multiwell sites. Lastly, using conventional cell functions as indicator tools to assess dual toxicity, we investigate a non-drug induced liver injury (non-DILI) compound and DILI compound. The technology is for predictive evaluations of new compound formulations, new chemical entities (NCE), or drugs that have previously failed testing for unresolved reasons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。