M6A RNA Methylation-Based Epitranscriptomic Modifications in Plasticity-Related Genes via miR-124-C/EBPα-FTO-Transcriptional Axis in the Hippocampus of Learned Helplessness Rats

习得性无助大鼠海马中通过 miR-124-C/EBPα-FTO 转录轴对可塑性相关基因进行基于 M6A RNA 甲基化的表观转录组修饰

阅读:4
作者:Bhaskar Roy, Shinichiro Ochi, Yogesh Dwivedi

Background

Impaired synaptic plasticity has been linked to dynamic gene regulatory network changes. Recently, gene regulation has been introduced with the emerging concept of unique N6-methyladenosine (m6A)-based reversible transcript methylation. In this study, we tested whether m6A RNA methylation may potentially serve as a link between the stressful insults and altered expression of plasticity-related genes.

Conclusions

Our study mechanistically linked defective C/EBP-α-FTO-axis, epigenetically influenced by induced expression of miR-124-3p, in modifying m6A enrichment in plasticity-related genes. This could potentially be linked with abnormal neuronal plasticity in depression.

Methods

Expression of plasticity genes Nr3c1, Creb1, Ntrk2; m6A-modifying enzymes Fto, methyltransferase like (Mettl)-3 and 14; DNA methylation enzymes Dnmt1, Dnmt3a; transcription factor C/ebp-α; and miRNA-124-3p were determined by quantitative polymerase chain reaction (qPCR) in the hippocampus of rats that showed susceptibility to develop stress-induced depression (learned helplessness). M6A methylation of plasticity-related genes was determined following m6A mRNA immunoprecipitation. Chromatin immunoprecipitation was used to examine the endogenous binding of C/EBP-α to the Fto promoter. MiR-124-mediated post-transcriptional inhibition of Fto via C/EBPα was determined using an in vitro model.

Results

Hippocampus of learned helplessness rats showed downregulation of Nr3c1, Creb1, and Ntrk2 along with enrichment in their m6A methylation. A downregulation in demethylating enzyme Fto and upregulation in methylating enzyme Mettl3 were also noted. The Fto promoter was hypomethylated due to the lower expression of Dnmt1 and Dnmt3a. At the same time, there was a lower occupancy of transcription factor C/EBPα on the Fto promoter. Conversely, C/ebp-α transcript was downregulated via induced miR-124-3p expression. Conclusions: Our study mechanistically linked defective C/EBP-α-FTO-axis, epigenetically influenced by induced expression of miR-124-3p, in modifying m6A enrichment in plasticity-related genes. This could potentially be linked with abnormal neuronal plasticity in depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。