Cancer-associated FBXW7 loss is synthetic lethal with pharmacological targeting of CDC7

癌症相关的FBXW7缺失与靶向CDC7的药物治疗具有合成致死性。

阅读:3
作者:Joseph S Baxter ,Rachel Brough ,Dragomir B Krastev ,Feifei Song ,Sandhya Sridhar ,Aditi Gulati ,John Alexander ,Theodoros I Roumeliotis ,Zuza Kozik ,Jyoti S Choudhary ,Syed Haider ,Stephen J Pettitt ,Andrew N J Tutt ,Christopher J Lord

Abstract

The F-box and WD repeat domain containing 7 (FBXW7) tumour suppressor gene encodes a substrate-recognition subunit of Skp, cullin, F-box (SCF)-containing complexes. The tumour-suppressive role of FBXW7 is ascribed to its ability to drive ubiquitination and degradation of oncoproteins. Despite this molecular understanding, therapeutic approaches that target defective FBXW7 have not been identified. Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens, focussed RNA-interference screens and whole and phospho-proteome mass spectrometry profiling in multiple FBXW7 wild-type and defective isogenic cell lines, we identified a number of FBXW7 synthetic lethal targets, including proteins involved in the response to replication fork stress and proteins involved in replication origin firing, such as cell division cycle 7-related protein kinase (CDC7) and its substrate, DNA replication complex GINS protein SLD5 (GINS4). The CDC7 synthetic lethal effect was confirmed using small-molecule inhibitors. Mechanistically, FBXW7/CDC7 synthetic lethality is dependent upon the replication factor telomere-associated protein RIF1 (RIF1), with RIF1 silencing reversing the FBXW7-selective effects of CDC7 inhibition. The delineation of FBXW7 synthetic lethal effects we describe here could serve as the starting point for subsequent drug discovery and/or development in this area. Keywords: CDC7; CRISPR screen; FBXW7; cancer; synthetic lethality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。