Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels

胆固醇耗竭改变血管钙激活氯通道的振幅和药理学

阅读:3
作者:William R Sones, Alison J Davis, Normand Leblanc, Iain A Greenwood

Aims

Calcium-activated chloride channels (CACCs) share common pharmacological properties with Kcnma1-encoded large conductance K(+) channels (BK(Ca) or K(Ca)1.1) and it has been suggested that they may co-exist in a macromolecular complex. As K(Ca)1.1 channels are known to localize to cholesterol and caveolin-rich lipid rafts (caveolae), the present study investigated whether Ca(2+)-sensitive Cl(-) currents in vascular myocytes were affected by the cholesterol depleting agent methyl-beta-cyclodextrin (M-betaCD).

Conclusion

These data reveal that CACC properties are influenced by lipid raft integrity.

Results

Calcium-activated chloride and potassium currents were recorded from single murine portal vein myocytes in whole cell voltage clamp. Western blot was undertaken following sucrose gradient ultracentrifugation using protein lysates from whole portal veins. Ca(2+)-activated Cl(-) currents were augmented by 3 mg mL(-1) M-betaCD with a rapid time course (t(0.5) = 1.8 min). M-betaCD had no effect on the bi-modal response to niflumic acid or anthracene-9-carboxylate but completely removed the inhibitory effects of the K(Ca)1.1 blockers, paxilline and tamoxifen, as well as the stimulatory effect of the K(Ca)1.1 activator NS1619. Discontinuous sucrose density gradients followed by western blot analysis revealed that the position of lipid raft markers caveolin and flotillin-2 was altered by 15 min application of 3 mg mL(-1) M-betaCD. The position of K(Ca)1.1 and the newly identified candidate for CACCs, TMEM16A, was also affected by M-betaCD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。