Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral spread

细胞周期蛋白 D3 限制 SARS-CoV-2 包膜掺入病毒体并干扰病毒传播

阅读:7
作者:Ravi K Gupta, Petra Mlcochova

Abstract

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions are essential for the development of new COVID-19 treatment strategies. Here, we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin-dependent kinases were observed. Further, cyclin D depletion was independent of SARS-CoV-2-mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small-interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。