Repeated eccentric contractions positively regulate muscle oxidative metabolism and protein synthesis during cancer cachexia in mice

重复性离心收缩对小鼠癌症恶病质期间的肌肉氧化代谢和蛋白质合成有积极调节作用

阅读:8
作者:Justin P Hardee, Dennis K Fix, Ho-Jin Koh, Xuewen Wang, Edie C Goldsmith, James A Carson

Abstract

Cancer-induced wasting is accompanied by disruptions to muscle oxidative metabolism and protein turnover that have been associated with systemic inflammation, whereas exercise and stimulated muscle contractions can positively regulate muscle protein synthesis and mitochondrial homeostasis. In preclinical cancer cachexia models, a single bout of eccentric contractions (ECCs) can induce protein synthesis and repeated ECC bouts prevent myofiber atrophy. The cellular mechanisms providing this protection from atrophy have not been resolved. Therefore, the purpose of this study was to determine whether repeated stimulated ECC bouts affect basal muscle oxidative metabolism and protein synthesis during cancer cachexia, and if these changes were associated with plasma IL-6 levels. Male ApcMin/+ (MIN; n = 10) mice initiating cachexia and healthy C57BL/6 (B6; n = 11) control mice performed repeated ECC bouts over 2 wk. MIN mice exhibited body weight loss and elevated plasma IL-6 before and during repeated ECC bouts. Control MIN muscle demonstrated disrupted signaling related to inflammation, oxidative capacity, and protein synthesis regulation, which were all improved by repeated ECC bouts. With cachexia, plasma IL-6 levels were negatively correlated with myofiber cross-sectional area, oxidative capacity, and protein synthesis. Interestingly, ECC improvements in these outcomes were positively correlated with plasma IL-6 levels in MIN mice. There was also a positive relationship between muscle oxidative capacity and protein synthesis after repeated ECC bouts in MIN mice. Collectively, repeated ECC bouts altered the cachectic muscle phenotype independent of systemic wasting, and there was a strong association between muscle oxidative capacity and protein synthesis in this adaptive response.NEW & NOTEWORTHY Cancer-induced muscle wasting is accompanied by disruptions to muscle oxidative metabolism and protein turnover regulation, whereas exercise is a potent stimulator of muscle protein synthesis and mitochondrial homeostasis. In a preclinical model of cancer cachexia, we report that cachectic muscle retains anabolic and metabolic plasticity to repeated eccentric contraction bouts despite an overall systemic wasting environment. The attenuation of muscle atrophy is linked to improved oxidative capacity and protein synthesis during cancer cachexia progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。