Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats

与西方饮食中的牛奶蛋白相比,大豆改变了肥胖 OLETF 大鼠的粪便微生物群并降低了肝脏脂肪变性

阅读:4
作者:Matthew R Panasevich, Colin M Schuster, Kathryn E Phillips, Grace M Meers, Sree V Chintapalli, Umesh D Wankhade, Kartik Shankar, Dustie N Butteiger, Elaine S Krul, John P Thyfault, R Scott Rector

Abstract

Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (P<.05) fat mass and percent fat by ~10% compared with MS, but not compared with MPI. Serum thiobarbituric acid reactive substance and total and low-density lipoprotein cholesterol concentrations were lower (P<.05) with dietary SPI vs. MPI and MS. Histological hepatic steatosis was lower (P<.05) in SPI compared with MPI or MS. Lipidomic analyses revealed reductions (P<.05) in hepatic diacylglycerols but not triacylglycerols in SPI compared with MPI, which was associated with lower hepatic de novo lipogenesis (ACC, FAS and SCD-1 protein content, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (P<.05) compared with MPI and MS; however, MPI displayed elevated hepatic mitochondrial function compared with SPI and MS. Fecal bacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。