Conclusion
This unique progenitor-like population based on CD34-CD166+CD146+ sorting from chondrocytes exhibits efficient potential for cartilage repair and merits further evaluation for its therapeutic application.
Methods
Chondrocytes obtained from 3 human osteoarthritic knee joints were subjected to sorting, to isolate CD166+ and CD34- subsets, and then were further sorted to obtain CD146+ and CD146- cells. Chondrocytes and fibronectin adhesion-derived chondroprogenitors served as controls. Assessment parameters included reverse transcriptase polymerase chain reaction for markers of chondrogenesis and hypertrophy, trilineage differentiation, and total GAG/DNA content.
Purpose
Chondrocytes, isolated from articular cartilage, are routinely utilized in cell-based therapeutics for the treatment of cartilage pathologies. However, restoration of the biological tissue faces hindrance due to the formation of primarily fibrocartilaginous repair tissue. Chondroprogenitors have been reported to display superiority in terms of their chondrogenic potential and lesser proclivity for hypertrophy. In line with our recent
Results
Based on gene expression analysis, CD34-CD166+CD146+ sorted chondrocytes and chondroprogenitors displayed comparability and significantly higher chondrogenesis with a lower tendency for hypertrophy when compared to chondrocytes and CD34-CD166+CD146- sorted chondrocytes. The findings were also reiterated in multilineage potential differentiation with the 146+ subset and chondroprogenitors displaying lower calcification and chondroprogenitors displaying higher total GAG/DNA content compared to chondrocytes and 146- cells.
