Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance

转录网络检查揭示了 TCFAP2C、SMARCA4 和 EOMES 在滋养层干细胞维持中的重要作用

阅读:6
作者:Benjamin L Kidder, Stephen Palmer

Abstract

Trophoblast stem cells (TS cells), derived from the trophectoderm (TE) of blastocysts, require transcription factors (TFs) and external signals (FGF4, INHBA/NODAL/TGFB1) for self-renewal. While many reports have focused on TF networks that regulate embryonic stem cell (ES cell) self-renewal and pluripotency, little is know about TF networks that regulate self-renewal in TS cells. To further understand transcriptional networks in TS cells, we used chromatin immunoprecipitation with DNA microarray hybridization (ChIP-chip) analysis to investigate targets of the TFs-TCFAP2C, EOMES, ETS2, and GATA3-and a chromatin remodeling factor, SMARCA4. We then evaluated the transcriptional states of target genes using transcriptome analysis and genome-wide analysis of histone H3 acetylation (AcH3). Our results describe previously unknown transcriptional networks in TS cells, including TF occupancy of genes involved in ES cell self-renewal and pluripotency, co-occupancy of TCFAP2C, SMARCA4, and EOMES at a significant number of genes, and transcriptional regulatory circuitry within the five factors. Moreover, RNAi depletion of Tcfap2c, Smarca4, and Eomes transcripts resulted in a loss of normal colony morphology and down-regulation of TS cell-specific genes, suggesting an important role for TCFAP2C, SMARCA4, and EOMES in TS cell self-renewal. Through genome-wide mapping and global expression analysis of five TF target genes, our data provide a comprehensive analysis of transcriptional networks that regulate TS cell self-renewal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。