Checkpoint kinase 2 is required for efficient immunoglobulin diversification

检查点激酶 2 是有效免疫球蛋白多样化所必需的

阅读:5
作者:Kathrin Davari, Samantha Frankenberger, Angelika Schmidt, Nils-Sebastian Tomi, Berit Jungnickel

Abstract

Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context. During secondary immunoglobulin (Ig) diversification in B lymphocytes, DNA damage is abundantly introduced by activation-induced cytidine deaminase (AID) and processed to mutations in a locus-specific manner by several error-prone DNA repair pathways. We have previously shown that Chk1 negatively regulates Ig somatic hypermutation by promoting error-free homologous recombination and Ig gene conversion. We now report that Chk2 shows opposite effects to Chk1 in the regulation of these processes. Chk2 inactivation in B cells leads to decreased Ig hypermutation and Ig class switching, and increased Ig gene conversion activity. This is linked to defects in non-homologous end joining and increased Chk1 activation upon interference with Chk2 function. Intriguingly, in the context of physiological introduction of substantial DNA damage into the genome during Ig diversification, the 2 checkpoint kinases thus function in an opposing manner, rather than redundantly or cooperatively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。