Energy eigenvalues and finite-temperature magnetization for the improved Scarf II potential in the presence of external magnetic and Aharonov-Bohm flux fields

在外部磁场和 Aharonov-Bohm 通量场存在下改进的 Scarf II 势的能量特征值和有限温度磁化

阅读:5
作者:E S Eyube, P P Notani, C A Onate, U Wadata, E Omugbe, B M Bitrus, S D Najoji

Abstract

In this paper, the bound state solutions of the radial Schrödinger equation are obtained in closed form under an improved Scarf II potential energy function (ISPEF) constrained by external magnetic and Aharonov-Bohm (AB) flux fields. By constructing a suitable Pekeris-like approximation scheme for the centrifugal barrier, approximate analytical expressions for the bound-states and thermal partition function were obtained. With the aid of the partition function, an explicit equation for magnetization at finite temperatures is developed. The obtained equations were then applied to calculate the energy levels and magnetic properties of 7Li2 (2 3Πg), K2 (X 1Σg+), Mg2 (X 1Σg+) and NaBr (X 1Σ+) diatomic molecules. The obtained numerical results of the vibrational energies for these molecules were found to be in good agreement with theoretic and experimental values reported in the existing literature. The results indicated that by turning off the magnetic and AB fields, the energy levels of the diatomic molecules degenerate. The results further revealed that an increase in the temperature of the molecules and the AB field strengths leads to a linear decrease in magnetization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。