Mitophagy Reduces Oxidative Stress Via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway After Subarachnoid Hemorrhage in Rats

线粒体自噬通过 Keap1(Kelch 样环氧氯丙烷相关蛋白 1)/Nrf2(核因子 E2 相关因子 2)/PHB2(抑制素 2)通路减轻大鼠蛛网膜下腔出血后的氧化应激

阅读:6
作者:Tongyu Zhang, Pei Wu, Enkhjargal Budbazar, Qiquan Zhu, Chengmei Sun, Jun Mo, Jianhua Peng, Vadim Gospodarev, Jiping Tang, Huaizhang Shi, John H Zhang

Abstract

Background and Purpose- Mitoquinone has been reported as a mitochondria-targeting antioxidant to promote mitophagy in various chronic diseases. Here, our aim was to study the role of mitoquinone in mitophagy activation and oxidative stress-induced neuronal death reduction after subarachnoid hemorrhage (SAH) in rats. Methods- Endovascular perforation was used for SAH model of male Sprague-Dawley rats. Exogenous mitoquinone was injected intraperitoneally 1 hour after SAH. ML385, an inhibitor of Nrf2 (nuclear factor-E2-related factor 2), was given intracerebroventricularly 24 hours before SAH. Small interfering RNA for PHB2 (prohibitin 2) was injected intracerebroventricularly 48 hours before SAH. Nuclear, mitochondrial, and cytoplasmic fractions were gathered using nucleus and mitochondria isolation kits. SAH grade evaluation, short- and long- term neurological function tests, oxidative stress, and apoptosis measurements were performed. Pathway related proteins were investigated with Western blot and immunofluorescence staining. Results- Expression of Keap1 (Kelch-like epichlorohydrin-associated protein 1, 2.84× at 24 hours), Nrf2 (2.78× at 3 hours), and LC3II (light chain 3-II; 1.94× at 24 hours) increased, whereas PHB2 (0.46× at 24 hours) decreased after SAH compared with sham group. Mitoquinone treatment attenuated oxidative stress and neuronal death, both short-term and long-term. Administration of mitoquinone resulted in a decrease in expression of Keap1 (0.33×), Romo1 (reactive oxygen species modulator 1; 0.24×), Bax (B-cell lymphoma-2 associated X protein; 0.31×), Cleaved Caspase-3 (0.29×) and an increase in Nrf2 (2.13×), Bcl-xl (B-cell lymphoma-extra large; 1.67×), PINK1 (phosphatase and tensin-induced kinase 1; 1.67×), Parkin (1.49×), PHB2 (1.60×), and LC3II (1.67×) proteins compared with SAH+vehicle group. ML385 abolished the treatment effects of mitoquinone on behavior and protein levels. PHB2 small interfering RNA reversed the outcomes of mitoquinone administration through reduction in protein expressions downstream of PHB2. Conclusions- Mitoquinone inhibited oxidative stress-related neuronal death by activating mitophagy via Keap1/Nrf2/PHB2 pathway after SAH. Mitoquinone may serve as a potential treatment to relieve brain injury after SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。