Inhibition of human N- and T-type calcium channels by an ortho-phenoxyanilide derivative, MONIRO-1

邻苯氧基苯胺衍生物 MONIRO-1 对人类 N 型和 T 型钙通道的抑制

阅读:7
作者:Jeffrey R McArthur, Leonid Motin, Ellen C Gleeson, Sandro Spiller, Richard J Lewis, Peter J Duggan, Kellie L Tuck, David J Adams

Background and purpose

Voltage-gated calcium channels are involved in nociception in the CNS and in the periphery. N-type (Cav 2.2) and T-type (Cav 3.1, Cav 3.2 and Cav 3.3) voltage-gated calcium channels are particularly important in studying and treating pain and epilepsy. Experimental approach: In this study, whole-cell patch clamp electrophysiology was used to assess the potency and mechanism of action of a novel ortho-phenoxylanilide derivative, MONIRO-1, against a panel of voltage-gated calcium channels including Cav 1.2, Cav 1.3, Cav 2.1, Cav 2.2, Cav 2.3, Cav 3.1, Cav 3.2 and Cav 3.3. Key

Purpose

Voltage-gated calcium channels are involved in nociception in the CNS and in the periphery. N-type (Cav 2.2) and T-type (Cav 3.1, Cav 3.2 and Cav 3.3) voltage-gated calcium channels are particularly important in studying and treating pain and epilepsy. Experimental approach: In this study, whole-cell patch clamp electrophysiology was used to assess the potency and mechanism of action of a novel ortho-phenoxylanilide derivative, MONIRO-1, against a panel of voltage-gated calcium channels including Cav 1.2, Cav 1.3, Cav 2.1, Cav 2.2, Cav 2.3, Cav 3.1, Cav 3.2 and Cav 3.3. Key

Results

MONIRO-1 was 5- to 20-fold more potent at inhibiting human T-type calcium channels, hCav 3.1, hCav 3.2 and hCav 3.3 (IC50 : 3.3 ± 0.3, 1.7 ± 0.1 and 7.2 ± 0.3 μM, respectively) than N-type calcium channel, hCav 2.2 (IC50 : 34.0 ± 3.6 μM). It interacted with L-type calcium channels Cav 1.2 and Cav 1.3 with significantly lower potency (IC50 > 100 μM) and did not inhibit hCav 2.1 or hCav 2.3 channels at concentrations as high as 100 μM. State- and use-dependent inhibition of hCav 2.2 channels was observed, whereas stronger inhibition occurred at high stimulation frequencies for hCav 3.1 channels suggesting a different mode of action between these two channels. Conclusions and implications: Selectivity, potency, reversibility and multi-modal effects distinguish MONIRO-1 from other low MW inhibitors acting on Cav channels involved in pain and/or epilepsy pathways. High-frequency firing increased the affinity for MONIRO-1 for both hCav 2.2 and hCav 3.1 channels. Such Cav channel modulators have potential clinical use in the treatment of epilepsies, neuropathic pain and other nociceptive pathophysiologies. Linked articles: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。