Geranylgeranyl diphosphate synthase 1 knockdown suppresses NLRP3 inflammasome activity via promoting autophagy in sepsis-induced acute lung injury

栊牛儿基栊牛儿基二磷酸合酶 1 敲低可通过促进脓毒症引起的急性肺损伤中的自噬来抑制 NLRP3 炎症小体活性

阅读:5
作者:Dahuan Li, Chunyan Li, Tianzhong Wang, Chong Zhang, Zhao Zhu, Guoxiu Zhang, Bangjiang Fang

Background

NOD-like receptor protein 3 (NLRP3) inflammasome activation has emerged as a crucial contributor to sepsis-induced lung injury. Geranylgeranyl diphosphate synthase 1 (GGPPS1) reportedly exerts the pro-inflammatory capability via activation of NLRP3 inflammasome. However, little is known about the role and mechanism of GGPPS1 in sepsis-induced lung injury.

Conclusion

GGPPS1 knockdown suppressed NLRP3 inflammasome activity via promoting autophagy and then attenuated sepsis-induced acute lung injury, revealing a novel target for treating sepsis-induced lung injury.

Methods

Mice underwent cecal ligation and puncture (CLP) surgery to establish the in vivo model of sepsis. The lung injury of mice was assessed by analyzing the histological changes, the lung wet/dry ratio, PaO2/FiO2 ratio, myeloperoxidase (MPO) activity, total protein content, total cell, and polymorphonuclear leukocyte counts. Mouse alveolar macrophages MH-S were exposed to LPS for developing in vitro model of sepsis. The mRNA and protein expression levels of GGPPS1, beclin-1, and autophagy and inflammasome-related genes were detected using quantitative reverse transcription-polymerase chain reaction and western blot assays. Enzyme-linked immunosorbent assay was conducted to determine the levels of interleukin (IL)-1β and IL-18.

Results

We successfully established sepsis-induced acute lung injury in vivo by CLP surgery. GGPPS1 was upregulated in the lung tissues of CLP-induced septic mice. The activation of autophagy and NLRP3 inflammasome were found in the lung tissues of CLP-induced septic mice. The addition of exogenous GGPP (synthesis products catalyzed by GGPPS1) and autophagic inhibitor 3-MA aggravated sepsis-induced hypoxemia, alveolar inflammatory response, intrapulmonary hemorrhage, and pulmonary edema, as evidenced by increased lung injury score, lung wet/dry weight ratio, MPO activity, total protein content, total cell, and PMNs counts, and decreased PaO2/FiO2 ratio. While NLRP3 inhibitor MCC950 exerted the opposite effects. Additionally, administration of exogenous GGPP could inhibit the activation of autophagy, enhance the activity of NLRP3 inflammasome, and the production of IL-1β and IL-18. Inhibition of autophagy by 3-MA treatment also promoted the activity of NLRP3 inflammasome and the production of IL-1β and IL-18. While MCC950 restrained the activity of NLRP3 inflammasome, but did not affect the activation of autophagy. Notably, the expression of GGPPS1 was unaltered in CLP-induced mice following GGPP, 3-MA, or MCC950 treatment. Moreover, GGPPS1 was upregulated in MH-S cells stimulated with LPS, and GGPPS1 knockdown enhanced the activation of autophagy and inhibited the activity of NLRP3 inflammasome in vitro. Importantly, depletion of GGPPS1 could alleviate LPS-induced inflammatory response by inducing autophagy-dependent NLRP3 inflammasome inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。