On the Roles of Cellulose Nanocrystals in Fiber Cement: Implications for Rheology, Hydration Kinetics, and Mechanical Properties

纤维素纳米晶体在纤维水泥中的作用:对流变性、水化动力学和机械性能的影响

阅读:4
作者:Sreenath Raghunath, Mahfuzul Hoque, E Johan Foster

Abstract

Fiber cement reinforced with pulp fibers is one of the key drivers for the decarbonization of nonstructural building materials, where the inclusion of sustainable pulp fibers at high proportions (i.e., > 8 wt %) renders poor workability of fiber-cement slurry with a concomitant loss in mechanical strength. Petrochemical-derived superplasticizers, i.e., polycarboxylates (PCEs), are predominantly used in fiber cement (including cement mortars) because they dramatically improve (content <0.5 wt %) the slurry rheology but reduce the rate of hydration and weaken the strength of the cured composite. Thus, it is crucial to explore renewable and bio-based superplasticizers devoid of any negative traits (if possible) of the conventional PCEs. In this study, we examined wood-derived cellulose nanocrystals (CNCs) as a multifunctional additive in fiber cement (bleached pulp fiber content: 8 wt %). In fiber cement, variation of the content (0.02-4 wt %) of CNCs resulted in improvement in the shear thinning behavior of the fiber-cement slurry and thereafter increased the hydration kinetics at high CNC contents (2-4 wt %). Notably, the flexural strength of the composite also exhibited improvement upon the addition of CNCs; the maximum strength was observed at 4 wt % of CNCs. Overall, the beneficial roles of CNCs afforded >10 wt % (in-total) bio-based content in fiber cement without compromising the mechanical strength and curing time (compared to PCEs); hence, the findings of this study could unravel new avenues in interface engineering of cement composites leveraging the multifunctional features of biomaterials, thus enhancing sustainability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。