Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke

利用绿色石油焦中的氮掺杂石墨烯类板高效去除双酚 A

阅读:10
作者:Zhipeng Liu, Quanyong Wang, Bei Zhang, Tao Wu, Yujiang Li

Abstract

Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m2/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m2/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 °C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and π-π interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。