COL3A1, COL5A1 and COL6A2 serve as potential molecular biomarkers for osteoarthritis based on weighted gene co‑expression network analysis bioinformatics analysis

基于加权基因共表达网络分析生物信息学分析,COL3A1、COL5A1 和 COL6A2 可作为骨关节炎的潜在分子生物标志物

阅读:6
作者:Yufeng Zhang, Yingzhen Niu, Yonggang Peng, Xueyang Pan, Fei Wang

Abstract

Osteoarthritis (OA) is a non-inflammatory degenerative joint disease, characterized by joint pain and stiffness. The prevalence of OA increases with age. However, the relationship between biomarkers [collagen type III α1 (COL3A1), COL5A1, COL6A2, COL12A1] and OA remains unclear. The OA subchondral bone dataset GSE51588 was downloaded from the GEO database, and the differentially expressed genes (DEGs) were screened. Weighted gene co-expression network analysis was performed, and a protein-protein interaction network was constructed and further analyzed using Cytoscape and STRING. Functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and then Gene Set Enrichment Analysis (GSEA) was used to formulate the molecular functions and pathways based on the results of GO and KEGG analyses. Comparative Toxicogenomics Database and TargetScan were used to identify the hub-gene-related diseases and the microRNAs that regulated the central hub genes. Immunohistochemical staining was performed to confirm the expression of related proteins in OA and non-OA tissue samples. A total of 1,679 DEGs were identified. GO analysis showed that the DEGs were primarily enriched in the process of 'immune system', 'extracellular region', 'secretory granule', 'collagen-containing extracellular matrix', 'ECM-receptor, glycosaminoglycan binding' and 'systemic lupus erythematosus'. The results of GSEA were similar to those of GO and KEGG enrichment terms for DEGs. A total of 25 important modules were generated, and two core gene clusters and seven core genes were obtained (COL6A2, COL5A2, COL12A1, COL5A1, COL6A1, LUM and COL3A1). Core genes were expressed differentially between OA subchondral bone and normal tissue samples. The expression levels of COL3A1, COL5A1 and COL6A2 in OA subchondral bone tissue were higher compared with those in normal tissues, but COL12A1 expression was not significantly increased; all stained markers were highly expressed in surrounding tissues of immunohistochemical staining. In conclusion, COL3A1, COL5A1 and COL6A2 may be potential molecular biomarkers for OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。