Dapagliflozin modulates the faecal microbiota after myocardial infarction in non-diabetic mice

达格列净调节非糖尿病小鼠心肌梗死后的粪便微生物群

阅读:13
作者:Zhongming Li, Kai Wang, Yinzhang Ding, Wenjie Ma, Yan Sun, Xianling Liu, Lijun Qian, Yansong Li, Jian Hong, Di Xu

Abstract

The gut microbiota seems to be a major modulator of cardiovascular diseases, such as myocardial infarction. Dapagliflozin, a sodium glucose cotransporter 2 inhibitor (SGLT2i), is an antidiabetic agent that was recently utilized in patients with cardiovascular diseases. This study aims to investigate the effects of dapagliflozin on the faecal microbiota of postinfarction non-diabetic mice. A total of 19 male mice were randomly divided into three groups, where two groups were enduced with myocardial infarction (MI) by left anterior descending ligation. One day after the surgery, each group was administered normal saline (15 mL/kg/day, 0.9%) or dapagliflozin (1.5 mg/kg/day) for 4 weeks. Echocardiography was obtained on day 28 post MI. Masson's trichrome staining was used to determine the degree of fibrosis. Faecal samples were collected to assess the microbiome by 16S ribosomal RNA gene sequencing. We found that dapagliflozin significantly improved cardiac function in the non-diabetic myocardial infarction mice model after the 28-day treatment, especially in ejection fraction and fractional shortening (p < 0.01). Enterotypes were composed of Muribaculaceae and Lactobacillaceae after dapagliflozin treatment, while Muribaculaceae and Erysipelotrichaceae were the main enterotypes post-MI. Dapagliflozin increased the abundance of beneficial bacteria like Lactobacillaceae, while decreasing the abundance of beneficial bacteria like Bifidobacteriaceae. It was interesting to discover that Proteobacteria (especially Desulfovibrionaceae) were enriched after the dapagliflozin treatment for myocardial infarction. Dapagliflozin increased the abundance of the main beneficial bacteria. In post-myocardial infarction treatments, using dapagliflozin could positively contribute to the improvement of cardiac function and alter the structure of faecal microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。