Photobiomodulation Therapy Attenuates Anxious-Depressive-Like Behavior in the TgF344 Rat Model

光生物调节疗法可减轻 TgF344 大鼠模型中的焦虑抑郁样行为

阅读:4
作者:Luodan Yang, Chongyun Wu, Lorelei Tucker, Yan Dong, Yong Li, Peisheng Xu, Quanguang Zhang

Background

Anxious-depressive-like behavior has been recognized as an early endophenotype in Alzheimer's disease (AD). Recent studies support early treatment of anxious-depressive-like behavior as a potential target to alleviate memory loss and reduce the risk of developing dementia. We hypothesize that photobiomodulation (PBM) could be an effective method to alleviate depression and anxiety at the early stage of AD pathogenesis.

Conclusion

Our findings support our hypothesis that PBM could be an effective method to alleviate depression and anxiety during the early stage of AD development. The mechanism underlying these beneficial effects may be due to the improvement of mitochondria function and integrity and the inhibition of neuroinflammation and oxidative stress.

Methods

Using a novel transgenic AD rat model, animals were divided into wild-type, AD+sham PBM, and AD+PBM groups. Two-minute daily PBM (irradiance: 25 mW/cm2 and fluence: 3 J/cm2 at the cortical level) was applied transcranially to the brain of AD animals from 2 months of age to 10 months of age. After completing PBM treatment at 10 months of age, behavioral tests were performed to measure learning, memory, and anxious-depressive-like behavior. Neuronal apoptosis, neuronal degeneration, neuronal damage, mitochondrial function, neuroinflammation, and oxidative stress were measured to test the effects of PBM on AD animals.

Objective

To analyze the effect of PBM treatment on anxious-depressive-like behavior at the early stage of AD.

Results

Behavioral tests showed that: 1) no spatial memory deficits were detected in TgF344 rats at 10 months of age; 2) PBM alleviated anxious-depressive-like behavior in TgF344 rats; 3) PBM attenuated neuronal damage, degeneration, and apoptosis; and 4) PBM suppresses neuroinflammation and oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。