Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

脂溶性芳酰肼螯合剂HNTMB及其对卵巢癌细胞的多重作用

阅读:5
作者:Kyu Kwang Kim, Thilo S Lange, Rakesh K Singh, Laurent Brard

Background

Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).

Conclusions

The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.

Methods

Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS)

Results

HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 microM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 microM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 microM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels. Conclusions: The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。