Poly I:C-induced maternal immune challenge reduces perineuronal net area and raises spontaneous network activity of hippocampal neurons in vitro

Poly I:C 诱导的母体免疫挑战减少了神经元周围网络面积并提高了体外海马神经元的自发网络活动

阅读:5
作者:David Wegrzyn, Marie-Pierre Manitz, Michael Kostka, Nadja Freund, Georg Juckel, Andreas Faissner

Abstract

Activation of the maternal immune system (MIA) during gestation is linked to neuropsychiatric diseases like schizophrenia. While many studies address behavioural aspects, less is known about underlying cellular mechanisms. In the following study, BALB/c mice received intraperitoneal injections of polyinosinic-polycytidylic acid (Poly I:C) (20 µg/ml) or saline (0.9%) at gestation day (GD) 9.5 before hippocampal neurons were isolated and cultured from embryonic mice for further analysis. Interestingly, strongest effects were observed when the perineuronal net (PNN) wearing subpopulation of neurons was analysed. Here, a significant reduction of aggrecan staining intensity, area and soma size could be detected. Alterations of PNNs are often linked to neuropsychiatric diseases, changes in synaptic plasticity and in electrophysiology. Utilizing multielectrode array analysis (MEA), we observed a remarkable increase of the spontaneous network activity in neuronal networks after 21 days in vitro (DIV) when mother mice suffered a prenatal immune challenge. As PNNs are associated with GABAergic interneurons, our data indicate that this neuronal subtype might be stronger affected by a prenatal MIA. Degradation or damage of this subtype might cause the hyperexcitability observed in the whole network. In addition, embryonic neurons of the Poly I:C condition developed significantly shorter axons after five days in culture, while dendritic parameters and apoptosis rate remained unchanged. Structural analysis of synapse numbers revealed an increase of postsynaptic density 95 (PSD-95) puncta after 14 DIV and an increase of presynaptic vesicular glutamate transporter (vGlut) puncta after 21 DIV, while inhibitory synaptic proteins were not altered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。