Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits

载脂蛋白 CIII 缺乏可预防基因敲除兔发生动脉粥样硬化

阅读:5
作者:Haizhao Yan #, Manabu Niimi #, Fumikazu Matsuhisa #, Huanjin Zhou, Shuji Kitajima, Yajie Chen, Chuan Wang, Xiawen Yang, Jian Yao, Dongshan Yang, Jifeng Zhang, Masami Murakami, Katsuyuki Nakajima, Yao Wang, Enqi Liu, Jingyan Liang, Y Eugene Chen, Jianglin Fan

Approach and results

To examine the possible roles of apoCIII in lipoprotein metabolism and atherosclerosis, we generated apoCIII KO (knockout) rabbits using ZFN (zinc finger nuclease) technique. On a normal standard diet, apoCIII KO rabbits exhibited significantly lower plasma levels of TG than those of WT (wild type) rabbits while total cholesterol and HDL (high-density lipoprotein) cholesterol levels were unchanged. Analysis of lipoproteins isolated by sequential ultracentrifugation revealed that reduced plasma TG levels in KO rabbits were accompanied by prominent reduction of VLDLs (very-low-density lipoproteins) and IDLs (intermediate-density lipoproteins). In addition, KO rabbits showed faster TG clearance rate after intravenous fat load than WT rabbits. On a cholesterol-rich diet, KO rabbits exhibited constantly and significantly lower levels of plasma total cholesterol and TG than WT rabbits, which was caused by a remarkable reduction of β-VLDLs-the major atherogenic lipoproteins. β-VLDLs of KO rabbits showed higher uptake by cultured hepatocytes and were cleared faster from the circulation than β-VLDLs isolated from WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. Conclusions: These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.

Conclusions

These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.

Objective

Apo (apolipoprotein) CIII mediates the metabolism of triglyceride (TG)-rich lipoproteins. High levels of plasma apoCIII are positively correlated with the plasma TG levels and increase the cardiovascular risk. However, whether apoCIII is directly involved in the development of atherosclerosis has not been fully elucidated. Approach and

Results

To examine the possible roles of apoCIII in lipoprotein metabolism and atherosclerosis, we generated apoCIII KO (knockout) rabbits using ZFN (zinc finger nuclease) technique. On a normal standard diet, apoCIII KO rabbits exhibited significantly lower plasma levels of TG than those of WT (wild type) rabbits while total cholesterol and HDL (high-density lipoprotein) cholesterol levels were unchanged. Analysis of lipoproteins isolated by sequential ultracentrifugation revealed that reduced plasma TG levels in KO rabbits were accompanied by prominent reduction of VLDLs (very-low-density lipoproteins) and IDLs (intermediate-density lipoproteins). In addition, KO rabbits showed faster TG clearance rate after intravenous fat load than WT rabbits. On a cholesterol-rich diet, KO rabbits exhibited constantly and significantly lower levels of plasma total cholesterol and TG than WT rabbits, which was caused by a remarkable reduction of β-VLDLs-the major atherogenic lipoproteins. β-VLDLs of KO rabbits showed higher uptake by cultured hepatocytes and were cleared faster from the circulation than β-VLDLs isolated from WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. Conclusions: These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。