Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis

抑制外周血清素合成可通过促进棕色脂肪组织产热来减少肥胖和代谢功能障碍

阅读:6
作者:Justin D Crane, Rengasamy Palanivel, Emilio P Mottillo, Adam L Bujak, Huaqing Wang, Rebecca J Ford, Andrew Collins, Regje M Blümer, Morgan D Fullerton, Julian M Yabut, Janice J Kim, Jean-Eric Ghia, Shereen M Hamza, Katherine M Morrison, Jonathan D Schertzer, Jason R B Dyck, Waliul I Khan, Gregory R

Abstract

Mitochondrial uncoupling protein 1 (UCP1) is enriched within interscapular brown adipose tissue (iBAT) and beige (also known as brite) adipose tissue, but its thermogenic potential is reduced with obesity and type 2 diabetes for reasons that are not understood. Serotonin (5-hydroxytryptamine, 5-HT) is a highly conserved biogenic amine that resides in non-neuronal and neuronal tissues that are specifically regulated via tryptophan hydroxylase 1 (Tph1) and Tph2, respectively. Recent findings suggest that increased peripheral serotonin and polymorphisms in TPH1 are associated with obesity; however, whether this is directly related to reduced BAT thermogenesis and obesity is not known. We find that Tph1-deficient mice fed a high-fat diet (HFD) are protected from obesity, insulin resistance and nonalcoholic fatty liver disease (NAFLD) while exhibiting greater energy expenditure by BAT. Small-molecule chemical inhibition of Tph1 in HFD-fed mice mimics the benefits ascribed to Tph1 genetic deletion, effects that depend on UCP1-mediated thermogenesis. The inhibitory effects of serotonin on energy expenditure are cell autonomous, as serotonin blunts β-adrenergic induction of the thermogenic program in brown and beige adipocytes in vitro. As obesity increases peripheral serotonin, the inhibition of serotonin signaling or its synthesis in adipose tissue may be an effective treatment for obesity and its comorbidities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。