Conclusions
Further efforts to optimize the chemically defined differentiation of hESC-monolayer-myoblasts would be the most promising strategy for the scalable generation of human myoblasts, for applications in MTT and high-throughput drug screening.
Methods
We compared the immortalization of primary myoblasts with hTERT, cyclin D1 and CDK4R24C , two chemically defined methods for deriving myoblasts from pluripotent human embryonic stem cells (hESCs), and introduction of viral MyoD into hESC-myoblasts.
Results
Our results show that, while all the strategies above are suboptimal at generating bona fide human myoblasts that can both proliferate and differentiate robustly, chemically defined hESC-monolayer-myoblasts show the most promise in differentiation potential. Conclusions: Further efforts to optimize the chemically defined differentiation of hESC-monolayer-myoblasts would be the most promising strategy for the scalable generation of human myoblasts, for applications in MTT and high-throughput drug screening.
