Characteristics and functions of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors expressed in mouse pancreatic {alpha}-cells

小鼠胰腺{α}细胞中表达的{α}-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯受体的特征和功能

阅读:4
作者:Jung-Hwa Cho, Liangyi Chen, Mean-Hwan Kim, Robert H Chow, Bertil Hille, Duk-Su Koh

Abstract

Pancreatic islet cells use neurotransmitters such as l-glutamate to regulate hormone secretion. We determined which cell types in mouse pancreatic islets express ionotropic glutamate receptor channels (iGluRs) and describe the detailed biophysical properties and physiological roles of these receptors. Currents through iGluRs and the resulting membrane depolarization were measured with patch-clamp methods. Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+)-evoked exocytosis were detected by Ca(2+) imaging and carbon-fiber microamperometry. Whereas iGluR2 glutamate receptor immunoreactivity was detected using specific antibodies in immunocytochemically identified mouse alpha- and beta-cells, functional iGluRs were detected only in the alpha-cells. Fast application of l-glutamate to cells elicited rapidly activating and desensitizing inward currents at -60 mV. By functional criteria, the currents were identified as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. They were activated and desensitized by AMPA, and were activated only weakly by kainate. The desensitization by AMPA was inhibited by cyclothiazide, and the currents were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Islet iGluRs showed nonselective cation permeability with a low Ca(2+) permeability (P(Ca)/P(Na) = 0.16). Activation of the AMPA receptors induced a sequence of cellular actions in alpha-cells: 1) depolarization of the membrane by 27 +/- 3 mV, 2) rise in intracellular Ca(2+) mainly mediated by voltage-gated Ca(2+) channels activated during the membrane depolarization, and 3) increase of exocytosis by the Ca(2+) rise. In conclusion, iGluRs expressed in mouse alpha-cells resemble the low Ca(2+)-permeable AMPA receptor in brain and can stimulate exocytosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。