Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail

剪切应力通过转录因子Snail诱导内皮-间质转化。

阅读:4
作者:Marwa M Mahmoud ,Jovana Serbanovic-Canic ,Shuang Feng ,Celine Souilhol ,Rouyu Xing ,Sarah Hsiao ,Akiko Mammoto ,Jing Chen ,Markus Ariaans ,Sheila E Francis ,Kim Van der Heiden ,Victoria Ridger ,Paul C Evans

Abstract

Blood flow influences atherosclerosis by generating wall shear stress, which alters endothelial cell (EC) physiology. Low shear stress induces dedifferentiation of EC through a process termed endothelial-to-mesenchymal transition (EndMT). The mechanisms underlying shear stress-regulation of EndMT are uncertain. Here we investigated the role of the transcription factor Snail in low shear stress-induced EndMT. Studies of cultured EC exposed to flow revealed that low shear stress induced Snail expression. Using gene silencing it was demonstrated that Snail positively regulated the expression of EndMT markers (Slug, N-cadherin, α-SMA) in EC exposed to low shear stress. Gene silencing also revealed that Snail enhanced the permeability of endothelial monolayers to macromolecules by promoting EC proliferation and migration. En face staining of the murine aorta or carotid arteries modified with flow-altering cuffs demonstrated that Snail was expressed preferentially at low shear stress sites that are predisposed to atherosclerosis. Snail was also expressed in EC overlying atherosclerotic plaques in coronary arteries from patients with ischemic heart disease implying a role in human arterial disease. We conclude that Snail is an essential driver of EndMT under low shear stress conditions and may promote early atherogenesis by enhancing vascular permeability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。