The E3 ligase TRIM26 suppresses ferroptosis through catalyzing K63-linked ubiquitination of GPX4 in glioma

E3 连接酶 TRIM26 通过催化胶质瘤中 GPX4 的 K63 连接泛素化来抑制铁死亡

阅读:5
作者:Zhangjie Wang #, Yuan Xia #, Yang Wang #, Ruiqiu Zhu, Hongbo Li, Yu Liu, Na Shen

Abstract

The selenium-containing enzyme GPX4 moonlights as a central regulator of ferroptosis, an iron-dependent, nonapoptotic form of regulated cell death caused by lipid peroxidation. Yet, little is known about the mechanisms underlying the regulation of its post-transcriptional modifications. Here, we identify the tripartite motif-containing protein TRIM26 as an E3 ubiquitin ligase of GPX4. TRIM26 directly interacts with GPX4 through its Ring domain and catalyzes the ubiquitination of GPX4 at K107 and K117, which promotes the switch in polyubiquitination of GPX4 from K48 to K63, thus enhancing GPX4 protein stability. Moreover, PLK1-mediated S127 phosphorylation of TRIM26 enhances the interaction between TRIM26 and GPX4. Inhibition of TRIM26 phosphorylation causes a reduction in GPX4 K63-linked polyubiquitination and diminishes GPX4 protein levels in tumor cells. Further investigation revealed that TRIM26 is overexpressed in glioma cells. TRIM26 silencing dramatically impedes ferroptosis resistance and tumorigenesis in glioma in vivo and in vitro. Clinically, TRIM26 expression shows a direct correlation with GPX4 and PLK1 levels in glioma samples and is associated with poor outcome in patients with glioma. Collectively, these findings define the role of GPX4 K63-linked polyubiquitination in ferroptosis and suggest a potential strategy for glioma treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。