Galectin-12 modulates Kupffer cell polarization to alter the progression of nonalcoholic fatty liver disease

半乳糖凝集素-12 调节库普弗细胞极化以改变非酒精性脂肪肝疾病的进展

阅读:4
作者:Jyun-Lin Lee, Yao-Chien Wang, Yu-An Hsu, Chih-Sheng Chen, Rui-Cian Weng, Yen-Pei Lu, Chun-Yu Chuang, Lei Wan

Abstract

Nonalcoholic fatty liver disease is caused by an imbalance in lipid metabolism and immune response to pose a risk factor for liver fibrosis. Recent evidence indicates that M2 macrophages secrete transforming growth factor-β1, which contributes to liver fibrosis. Galectin-12 has been demonstrated to regulate lipid metabolism and macrophage polarization. The purpose of this study is to investigate the role of galectin-12 in the development of nonalcoholic fatty liver disease and fibrosis. Liver tissue from wild-type C57BL/6 mice fed with a high-fat diet containing cholesterol and cholic acid for 4-12 weeks was used to examine galectin-12 expression and its correlation with nonalcoholic fatty liver disease. Furthermore, the effects of galectin-12 on M2 macrophages during the progression of nonalcoholic fatty liver disease were investigated by studying Kupffer cells from galectin-12 knockout mice and doxycycline-inducible Gal12-/-THP-1 cells. Ablation of galectin-12 promoted M2 polarization of Kupffer cells, as indicated by higher levels of M2 markers, such as arginase I and chitinase 3-like protein 3. Furthermore, the activation of signal transducer and activator of transcription 6 was significantly higher in Gal12-/- macrophages activated by interleukin-4, which was correlated with higher levels of transforming growth factor-β1. Moreover, Gal12-/- macrophage-conditioned medium promoted hepatic stellate cells myofibroblast differentiation, which was indicated by higher α-smooth muscle actin expression levels compared with those treated with LacZ control medium. Finally, we demonstrated that galectin-12 knockdown negatively regulated the suppressor of cytokine signaling 3 levels. These findings suggested that galectin-12 balances M1/M2 polarization of Kupffer cells to prevent nonalcoholic fatty liver disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。