Platelet-activating factor stimulates ovine foetal pulmonary vascular smooth muscle cell proliferation: role of nuclear factor-kappa B and cyclin-dependent kinases

血小板活化因子刺激绵羊胎儿肺血管平滑肌细胞增殖:核因子 κB 和细胞周期蛋白依赖性激酶的作用

阅读:5
作者:B O Ibe, M F Abdallah, A M Portugal, J U Raj

Conclusion

They suggest that in vivo, in foetal lung low-oxygen environment, where PAF level is high, proliferation of PVSMC will occur readily to modulate PV development and that failure of down-regulation of PAF effects postnatally may result in PPHN.

Methods

Cells from pulmonary arteries (SMC-PA) and veins (SMC-PV) were serum starved for 72 h in 5% CO2 in air (normoxia). They were cultured for 24 h more in normoxia or 2% O(2) (hypoxia) in 0.1% or 10% foetal bovine serum with 5 microCi/well of [(3)H]-thymidine, with and without 10 nm PAF. Nuclear factor-kappa B (NF-kappaB), CDK2 and CDK4 protein expression, and their roles in cell proliferation control were studied.

Objective

Platelet-activating factor (PAF) is implicated in pathogenesis of persistent pulmonary hypertension of the neonate (PPHN); PAF is a mitogen for lung fibroblasts. PAF's role in pulmonary vascular smooth muscle cell (PVSMC) proliferation and in hypoxia-induced pulmonary vein (PV) remodelling has not been established and mechanisms for PAF's cell-proliferative effects are not well understood. We investigated involvement of PAF and PAF receptors in PVSMC proliferation. Materials and

Results

PAF and hypoxia increased SMC-PA and SMC-PV proliferation. WEB2170 inhibited PAF-induced cell proliferation while lyso-PAF had no effect. SMC-PV proliferated more than SMC-PA and PAF plus hypoxia augmented NF-kappaB protein expression. NF-kappaB inhibitory peptide attenuated PAF-induced cell proliferation by 50% and PAF increased CDK2 and CDK4 protein expression. The data show that hypoxia and PAF up-regulate PVSMC proliferation via PAF receptor-specific pathway involving NF-kappaB, CDK2 and CDK4 activations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。