Background
Impaired alveolar macrophages phagocytosis can contribute to pathogenesis of acute respiratory distress syndrome (ARDS) and negatively impacts clinical outcomes. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound with potential anti-inflammatory and antioxidant bioactivities. Studies have shown that CGA plays a protective role in ARDS, however, the precise protective mechanism of CGA against ARDS, is still unclear.
Conclusion
CGA has a protective effect against ARDS and may enhance alveolar macrophages phagocytosis and attenuate lung inflammatory injury by upregulating GPR37 expression.
Methods
RAW264.7 cells were stimulated with lipopolysaccharides (100 μg/ml for 24 h) and treated with CGA (100, 200, and 400 μM CGA for 1 h) to measure pro-inflammatory cytokine levels, GPR37 expression and macrophages phagocytosis. Mouse models of ARDS induced by cecal ligation and perforation (CLP) surgery were treated with CGA (100 or 200 mg/kg) to investigate lung inflammatory injury and alveolar macrophages phagocytosis. Computational modeling was performed to examine potential binding sites of G protein-coupled receptor 37 (GPR37) with CGA, and the
Purpose
The aim of this study was to investigate whether CGA enhances alveolar macrophages phagocytosis to attenuate lung injury during ARDS.
