Prokaryotically and eukaryotically expressed interleukin-24 induces breast cancer growth suppression via activation of apoptosis and inhibition of tumor angiogenesis

原核和真核表达的白细胞介素-24 通过激活细胞凋亡和抑制肿瘤血管生成来抑制乳腺癌生长

阅读:6
作者:Shaohua Wei, Hua Cao, Xiaoyan Zhou, Haorong Wu, Jicheng Yang

Abstract

Melanoma differentiation‑associated‑7 (mda‑7)/interleukin‑24 (IL‑24), a unique cytokine‑tumor suppressor, exerts tumor‑selective killing activity in numerous types of cancer cell. Although eukaryotically and prokaryotically expressed recombinant human (rh)IL‑24 proteins have been previously shown to produce potent antitumor effects, to the best of our knowledge, no side‑by‑side study has been conducted that compares the two proteins directly. In the present study, rhIL‑24 protein was expressed in BL21 Escherichia coli transformed with the pET‑21a(+)‑hIL‑24 plasmid by isopropyl‑β‑D‑1‑thiogalactopyranoside induction. Following a denaturing and renaturing process, the soluble rhIL‑24 was purified using a Q‑Sepharose column. rhIL‑24 protein was also expressed in Chinese hamster ovary mammalian cells stably transfected with the pcDNA3‑hIL‑24 plasmid. The in vitro antitumor efficacies of the two treatments were compared using the MDA‑MB‑231 human breast cancer cell line. Furthermore, the therapeutic efficacies of the bacteria‑derived rhIL‑24 protein and the liposome‑coated pcDNA3‑hIL‑24 naked plasmid were evaluated in athymic nude mice with subcutaneously xenografted MDA‑MB‑231 cell tumors. The prokaryotically expressed/purified rhIL‑24 protein and the eukaryotically expressed rhIL‑24 in the cell supernate were revealed to be capable of efficiently suppressing MDA‑MB‑231 tumor growth in vitro. Similarly, the administration of bacteria‑derived rhIL‑24 protein and pcDNA3‑hIL‑24 naked plasmid also provided therapeutic benefits in the treatment of in vivo MDA‑MB‑231 xenografted tumors. The retarded in vitro and in vivo breast cancer growth elicited by rhIL‑24 was closely associated with the upregulation of the ratio of anti‑apoptotic B cell lymphoma 2 (Bcl‑2) to pro‑apoptotic Bcl‑2‑associated X protein (Bax), as well as the activation of caspase‑3 followed by marked induction of apoptosis, and the notable inhibition of tumor angiogenesis. Thus, the results of the present study indicate that prokaryotically expressed rhIL‑24 protein may be an alternate and promising antitumor agent in human breast cancer or other types of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。