Iso-seco-tanapartholide from Artemisia argyi inhibits the PFKFB3-mediated glycolytic pathway to attenuate airway inflammation in lipopolysaccharide-induced acute lung injury mice

艾蒿中的异开环塔那帕托内酯可抑制 PFKFB3 介导的糖酵解途径,从而减轻脂多糖诱发的急性肺损伤小鼠的气道炎症

阅读:8
作者:Min Kong, Dongrong Zhu, Junyi Dong, Lingyi Kong, Jianguang Luo

Aim of the study

This study aimed to investigate the protective effect and possible mechanism of IST in lipopolysaccharide (LPS)-induced acute lung injury in mice. Materials and

Conclusions

These results suggest that IST improves the characteristics of ALI by inhibiting the expression of the PFKFB3-mediated glycolytic pathway and may be a potential anti-inflammatory agent for inflammation-related lung diseases.

Methods

In vitro, RAW264.7 cells and BMDMs were stimulated with LPS, and the level of NO and inflammatory factors TNF-α, IL-1β, and IL-6 were detected by Griess reagent and ELISA, respectively. The effect of IST on the levels of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in cells was assayed by western blotting. Lactate and glycolytic phenotypes were detected by lactate kit and Seahorse assay. In vivo, a mouse model of acute lung injury was induced by LPS, and the levels of inflammatory factors were measured by ELISA. Expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in mouse alveolar macrophages by western blotting analysis. Lung permeability assessment by Evans Blue dye assay. H&E staining and Immunocytochemistry were used to observe the protection of IST against lung injury.

Results

IST significantly reduced LPS-induced expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65). The inhibition of PFKFB3 has an impact on the glycolytic phenotype, such as a reduction in the rate of extracellular acidification (ECAR) and elevated lactate levels, and an increase in the rate of cellular oxygen consumption (OCR). Furthermore, IST inhibited LPS-induced NO release and increased the expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. In vivo, IST reduced pulmonary edema in LPS-induced acute lung injury, improved lung function, and reduced levels of inflammatory factors and lactate secretion. Conclusions: These results suggest that IST improves the characteristics of ALI by inhibiting the expression of the PFKFB3-mediated glycolytic pathway and may be a potential anti-inflammatory agent for inflammation-related lung diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。