Evaluation of the Reactivity of Methanol and Hydrogen Sulfide Residues with the Ziegler-Natta Catalyst during Polypropylene Synthesis and Its Effects on Polymer Properties

评价聚丙烯合成过程中甲醇和硫化氢残留物与齐格勒-纳塔催化剂的反应性及其对聚合物性能的影响

阅读:7
作者:Joaquín Hernández-Fernández, Rafael González-Cuello, Rodrigo Ortega-Toro

Abstract

The study focused on the evaluation of the influence of inhibitory compounds such as hydrogen sulfide (H2S) and methanol (CH3OH) on the catalytic productivity and properties of the polymers in the polymerization process with the Ziegler-Natta catalyst. The investigation involved experimental measurements, computational calculations using DFT, and analysis of various parameters, such as molecular weight, melt flow index, xylene solubility, and reactivity descriptors. The results revealed a clear correlation between the concentration of H2S and methanol and the parameters evaluated. Increasing the H2S concentrations, on average by 0.5 and 1.0 ppm, resulted in a drastic decrease in the polymer's molecular weight. A directly proportional relationship was observed between the flow rate and the H2S concentration. In the case of methanol, the change occurred from 60 ppm, causing a sharp decrease in the molecular weight of the polymer, which translates into an increase in the fluidity index and a decrease in solubility in xylene. The presence of these inhibitors also affected the catalytic activity, causing a reduction in the productivity of the Ziegler-Natta catalyst. Computational calculations provided a deeper understanding of the molecular behavior and reactivity of the studied compounds. The computational calculations yielded significantly lower results compared to other studies, with values of -69.0 and -43.9 kcal/mol for the Ti-CH3OH and H2S interactions, respectively. These results indicate remarkable stability in the studied interactions and suggest that both adsorptions are highly favorable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。