Prediction of Gene Activity in Early B Cell Development Based on an Integrative Multi-Omics Analysis

基于综合多组学分析预测早期 B 细胞发育中的基因活性

阅读:4
作者:Mohammad Heydarian, Teresa Romeo Luperchio, Jevon Cutler, Christopher J Mitchell, Min-Sik Kim, Akhilesh Pandey, Barbara Sollner-Webb, Karen Reddy

Abstract

An increasingly common method for predicting gene activity is genome-wide chromatin immuno-precipitation of 'active' chromatin modifications followed by massively parallel sequencing (ChIP-seq). In order to understand better the relationship between developmentally regulated chromatin landscapes and regulation of early B cell development, we determined how differentially active promoter regions were able to predict relative RNA and protein levels at the pre-pro-B and pro-B stages. Herein, we describe a novel ChIP-seq quantification method (cRPKM) to identify active promoters and a multi-omics approach that compares promoter chromatin status with ongoing active transcription (GRO-seq), steady state mRNA (RNA-seq), inferred mRNA stability, and relative proteome abundance measurements (iTRAQ). We demonstrate that active chromatin modifications at promoters are good indicators of transcription and steady state mRNA levels. Moreover, we found that promoters with active chromatin modifications exclusively in one of these cell states frequently predicted the differential abundance of proteins. However, we found that many genes whose promoters have non-differential but active chromatin modifications also displayed changes in abundance of their cognate proteins. As expected, this large class of developmentally and differentially regulated proteins that was uncoupled from chromatin status used mostly post-transcriptional mechanisms. Strikingly, the most differentially abundant protein in our B-cell development system, 2410004B18Rik, was regulated by a post-transcriptional mechanism, which further analyses indicated was mediated by a micro-RNA. These data highlight how this integrated multi-omics data set can be a useful resource in uncovering regulatory mechanisms. This data can be accessed at: https://usegalaxy.org/u/thereddylab/p/prediction-of-gene-activity-based-on-an-integrative-multi-omics-analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。