A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors

用于表征转谷氨酰胺酶 2 (TG2) 抑制剂的分析平台

阅读:7
作者:Sabine Schaertl, Michael Prime, John Wityak, Celia Dominguez, Ignacio Munoz-Sanjuan, Robert E Pacifici, Stephen Courtney, Andreas Scheel, Douglas Macdonald

Abstract

Huntington's disease (HD) is associated with increased expression levels and activity of tissue transglutaminase (TG2), an enzyme primarily known for its cross-linking of proteins. To validate TG2 as a therapeutic target for HD in transgenic models and for eventual clinical development, a selective and brain-permeable inhibitor is required. Here, a comprehensive profiling platform of biochemical and cellular assays is presented which has been established to evaluate the potency, cellular efficacy, subtype selectivity and the mechanism-of-action of known and novel TG2 inhibitors. Several classes of inhibitors have been characterized including: the commonly used pseudo-substrate inhibitors, cystamine and putrescine (which are generally nonspecific for TG2 and therefore not practical for drug development), the various peptidic inhibitors that target the active site cysteine residue (which display excellent selectivity but in general have poor cellular activity), and the allosteric reversible small-molecule hydrazides (which show poor selectivity and a lack of cellular activity and could not be improved despite considerable medicinal chemistry efforts). In addition, a set of inhibitors identified from a collection of pharmacologically active compounds was found to be unselective for TG2. Moreover, inhibition at the guanosine triphosphate binding site has been examined, but apart from guanine nucleotides, no such inhibitors have been identified. In addition, the promising pharmacological profile of a TG2 inhibitor is presented which is currently in lead optimization to be developed as a tool compound.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。