AMPK differentially alters sulphated glycosaminoglycans under normal and high glucose milieu in proximal tubular cells

AMPK 在正常和高糖环境下对近端肾小管细胞中的硫酸化糖胺聚糖产生不同的改变

阅读:4
作者:C B Shrikanth, Sanjana Jagannath, Nandini D Chilkunda

Abstract

Glycosaminoglycans (GAGs) and AMP-activated protein kinase (AMPK) are two critical molecular players involved in cellular homeostasis. Both of them are altered due to hyperglycaemia in the kidney, leading to the pathogenesis of diabetic nephropathy. Here, we have looked into the effect of AMPK modulation on sulphated GAG (sGAG) levels of tubular cells of proximal and distal origin to understand the mechanism of hyperglycaemia-mediated pathogenesis of the diabetic nephropathy. In MDCK cells (distal tubular cell) and NRK-52E (proximal tubular cell), AMPK inhibition resulted in increased sGAG levels under normal glucose conditions characteristically of heparan sulphate class, whereas AMPK activation did not have any effect. High glucose (HG) condition did not alter sGAG levels in MDCK cell despite a decrease in AMPK phosphorylation. Subjecting NRK-52E cells to HG milieu significantly decreased sGAG levels more so of chondroitin/dermatan sulphate, which is significantly prevented when HG is co-treated with AMPK activator. Interestingly, knockdown of AMPK by AMPKα1/α2 siRNA showed increased sGAG levels in NRK-52E. Our results suggest that changes in sGAG level, in particular, as a result of AMPK modulation is differentially regulated and is dependent on cell type as well as its physiological status. Furthermore, activation of AMPK is beneficial in preventing the HG-mediated decrease in sGAGs in proximal tubular cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。