Inhibition of canalicular and sinusoidal taurocholate efflux by cholestatic drugs in human hepatoma HepaRG cells

胆汁淤积药物对人类肝癌 HepaRG 细胞中小管和窦状牛磺胆酸外流的抑制

阅读:20
作者:Marc Le Vée, Amélie Moreau, Elodie Jouan, Claire Denizot, Yannick Parmentier, Olivier Fardel

Abstract

HepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport, and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity. For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were reincubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed us to objectivize and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free reincubation period of HepaRG cells, that is, the efflux period, indicated that a 20 min-efflux period allowed reaching biliary and sinusoidal excretion indexes for TC around 80% and 60%, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide, or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the noncholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting drug-induced liver toxicity (DILI) due to the inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。