Distribution and Activity of Lenvatinib in Brain Tumor Models of Human Anaplastic Thyroid Cancer Cells in Severe Combined Immune Deficient Mice

重度联合免疫缺陷小鼠人类未分化甲状腺癌细胞脑肿瘤模型中仑伐替尼的分布和活性

阅读:7
作者:Rong Wang #, Tadaaki Yamada #, Sachiko Arai, Koji Fukuda, Hirokazu Taniguchi, Azusa Tanimoto, Akihiro Nishiyama, Shinji Takeuchi, Kaname Yamashita, Koshiro Ohtsubo, Junji Matsui, Naoyoshi Onoda, Eishu Hirata, Shu Taira, Seiji Yano

Abstract

Anaplastic thyroid carcinoma (ATC) is a rare but aggressive undifferentiated tumor that frequently metastasizes to the brain. The multiple kinase inhibitor lenvatinib and sorafenib have been approved to treat unresectable differentiated thyroid cancer, and lenvatinib has been approved in Japan to treat ATC. This study compared the effects of lenvatinib and sorafenib in mouse models of central nervous system metastases of ATC. Immunodeficient mice were inoculated with ATC cells, and the effects of lenvatinib and sorafenib were evaluated in subcutaneous- and brain metastasis-mimicking models. Drug distribution was evaluated by imaging tandem mass spectrometry (ITMS). Neither lenvatinib nor sorafenib affected the viability of ATC cell lines, whereas both inhibited VEGF secretion by ATC cells. In the subcutaneous tumor model, both lenvatinib and sorafenib inhibited growth and were associated with reduced tumor microvessel density. In the brain metastasis-mimicking model, lenvatinib, but not sorafenib, inhibited the growth of ATC cells and reduced microvessel density in brain lesions. ITMS showed that lenvatinib was well-distributed in both subcutaneous and brain lesions, whereas the distribution of sorafenib was lower in brain than in subcutaneous lesions. These results demonstrate that lenvatinib is well-distributed in mouse models of ATC, and inhibited the growth of ATC brain lesions predominantly by inhibiting angiogenesis, suggesting that lenvatinib is highly potent against ATC brain metastases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。