Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells

人类细胞响应内质网应激的基因表达和遗传变异

阅读:6
作者:Beth A Dombroski, Renuka R Nayak, Kathryn G Ewens, Wendy Ankener, Vivian G Cheung, Richard S Spielman

Abstract

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in the condition called "ER stress," which induces the unfolded protein response (UPR), a complex cellular process that includes changes in expression of many genes. Failure to restore homeostasis in the ER is associated with human diseases. To identify the underlying changes in gene expression in response to ER stress, we induced ER stress in human B cells and then measured gene expression at ten time points. We followed up those results by studying cells from 60 unrelated people. We rediscovered genes that were known to play a role in the ER-stress response and uncovered several thousand genes that are not known to be involved. Two of these are VLDLR and INHBE, which showed significant increase in expression after ER stress in B cells and in primary fibroblasts. To study the links between UPR and disease susceptibility, we identified ER-stress-responsive genes that are associated with human diseases and assessed individual differences in the ER-stress response. Many of the UPR genes are associated with Mendelian disorders, such as Wolfram syndrome, and complex diseases, including amyotrophic lateral sclerosis and diabetes. Data from two independent samples showed extensive individual variability in ER-stress response. Additional analyses with monozygotic twins revealed significant correlations within twin pairs in their responses to ER stress, thus showing evidence for heritable variation among individuals. These results have implications for basic understanding of ER function and its role in disease susceptibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。