Analysis of α-dicarbonyl compounds and volatiles formed in Maillard reaction model systems

美拉德反应模型体系中形成的 α-二羰基化合物和挥发物的分析

阅读:4
作者:Jiyoon Cha, Trishna Debnath, Kwang-Geun Lee

Abstract

In this study, production of three α-dicarbonyl compounds (α-DCs) including glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) as well as volatile flavor compounds was analyzed using Maillard reaction (MR) model systems. A total of 16 model systems were assembled using four amino acids and four reducing sugars, and reactions were performed at 160 °C and pH 9. Determination of α-DCs was conducted using a gas chromatography/nitrogen phosphorous detector (GC-NPD) after derivatization and liquid-liquid extraction. α-DC levels in MR model systems were 5.92 to 39.10 μg/mL of GO, 3.66 to 151.88 μg/ml of MGO, and 1.10 to 6.12 μg/mL of DA. The highest concentration of total α-DCs was found in the fructose-threonine model system and the lowest concentration in the lactose-cysteine model system. Volatile flavor compounds were analyzed using solid-phase micro-extraction (SPME) followed by GC-mass spectrometry (GC-MS). Different volatile flavor compound profiles were identified in the different MR model systems. Higher concentrations of α-DCs and volatile flavor compounds were observed in monosaccharide-amino acid MR model systems compared with disaccharide-amino acid model systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。