IK is essentially involved in ciliogenesis as an upstream regulator of oral-facial-digital syndrome ciliopathy gene, ofd1

IK 作为口-面-指综合征纤毛病基因 ofd1 的上游调节剂,主要参与纤毛发生

阅读:7
作者:Hye In Ka, Mina Cho, Seung-Hae Kwon, Se Hwan Mun, Sora Han, Min Jung Kim, Young Yang

Background

The cilia are microtubule-based organelles that protrude from the cell surface. Abnormalities in cilia result in various ciliopathies, including polycystic kidney disease (PKD), Bardet-Biedl syndrome (BBS), and oral-facial-digital syndrome type I (OFD1), which show genetic defects associated with cilia formation. Although an increasing number of human diseases is attributed to ciliary defects, the functions or regulatory mechanisms of several ciliopathy genes remain unclear. Because multi ciliated cells (MCCs) are especially deep in vivo, studying ciliogenesis is challenging. Here, we demonstrate that ik is essential for ciliogenesis in vivo.

Conclusions

This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.

Results

In the absence of ik, zebrafish embryos showed various ciliopathy phenotypes, such as body curvature, abnormal otoliths, and cyst formation in the kidney. RNA sequencing analysis revealed that ik positively regulated ofd1 expression required for cilium assembly. In fact, depletion of ik resulted in the downregulation of ofd1 expression with ciliary defects, and these ciliary defects in ik mutants were rescued by restoring ofd1 expression. Interestingly, ik affected ciliogenesis particularly in the proximal tubule but not in the distal tubule in the kidney. Conclusions: This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。