Oxidative cross-linking of fibronectin confers protease resistance and inhibits cellular migration

纤连蛋白的氧化交联赋予蛋白酶抗性并抑制细胞迁移

阅读:6
作者:Morgan L Locy, Sunad Rangarajan, Sufen Yang, Mark R Johnson, Karen Bernard, Ashish Kurundkar, Nathaniel B Bone, Jaroslaw W Zmijewski, Jaeman Byun, Subramaniam Pennathur, Yong Zhou, Victor J Thannickal

Abstract

The oxidation of tyrosine residues to generate o,o'-dityrosine cross-links in extracellular proteins is necessary for the proper function of the extracellular matrix (ECM) in various contexts in invertebrates. Tyrosine oxidation is also required for the biosynthesis of thyroid hormone in vertebrates, and there is evidence for oxidative cross-linking reactions occurring in extracellular proteins secreted by myofibroblasts. The ECM protein fibronectin circulates in the blood as a globular protein that dimerizes through disulfide bridges generated by cysteine oxidation. We found that cellular (fibrillar) fibronectin on the surface of transforming growth factor-β1 (TGF-β1)-activated human myofibroblasts underwent multimerization by o,o'-dityrosine cross-linking under reducing conditions that disrupt disulfide bridges, but soluble fibronectin did not. This reaction on tyrosine residues required both the TGF-β1-dependent production of hydrogen peroxide and the presence of myeloperoxidase (MPO) derived from inflammatory cells, which are active participants in wound healing and fibrogenic processes. Oxidative cross-linking of matrix fibronectin attenuated both epithelial and fibroblast migration and conferred resistance to proteolysis by multiple proteases. The abundance of circulating o,o'-dityrosine-modified fibronectin was increased in a murine model of lung fibrosis and in human subjects with interstitial lung disease compared to that in control healthy subjects. These studies indicate that tyrosine can undergo stable, covalent linkages in fibrillar fibronectin under inflammatory conditions and that this modification affects the migratory behavior of cells on such modified matrices, suggesting that this modification may play a role in both physiologic and pathophysiologic tissue repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。