Quantifying Isoprenoids in the Ergosterol Biosynthesis by Gas Chromatography-Mass Spectrometry

气相色谱-质谱法定量分析麦角固醇生物合成中的异戊二烯类化合物

阅读:5
作者:Maximilian Liebl, Ludwig Huber, Hesham Elsaman, Petra Merschak, Johannes Wagener, Fabio Gsaller, Christoph Müller

Abstract

The ergosterol pathway is a promising target for the development of new antifungals since its enzymes are essential for fungal cell growth. Appropriate screening assays are therefore needed that allow the identification of potential inhibitors. We developed a whole-cell screening method, which can be used to identify compounds interacting with the enzymes of isoprenoid biosynthesis, an important part of the ergosterol biosynthesis pathway. The method was validated according to the EMEA guideline on bioanalytical method validation. Aspergillus fumigatus hyphae and Saccharomyces cerevisiae cells were lysed mechanically in an aqueous buffer optimized for the enzymatic deconjugation of isoprenoid pyrophosphates. The residual alcohols were extracted, silylated and analyzed by GC-MS. The obtained isoprenoid pattern provides an indication of the inhibited enzyme, due to the accumulation of specific substrates. By analyzing terbinafine-treated A. fumigatus and mutant strains containing tunable gene copies of erg9 or erg1, respectively, the method was verified. Downregulation of erg9 resulted in a high accumulation of intracellular farnesol as well as elevated levels of geranylgeraniol and isoprenol. The decreased expression of erg1 as well as terbinafine treatment led to an increased squalene content. Additional analysis of growth medium revealed high farnesyl pyrophosphate levels extruded during erg9 downregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。