Role of ESAT-6 in renal injury by regulating microRNA-155 expression via TLR4/MyD88 signaling pathway in mice with Mycobacterium tuberculosis infection

ESAT-6通过TLR4/MyD88信号通路调控microRNA-155表达在结核分枝杆菌感染小鼠肾脏损伤中的作用

阅读:7
作者:Zhong-Qi Zhou, Zhi-Kui Wang, Lei Zhang, Yue-Qin Ren, Zhong-Wei Ma, Nan Zhao, Fu-Yun Sun

Abstract

The study aims to investigate the underlying mechanism involved in the early secretory antigenic target-6 (ESAT-6) in renal injury through regulation of the expression of miR-155 through the oll-like receptor (TLR)-4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway in Mycobacterium tuberculosis (MTB)-infected mice. Sixty C57BL/6 mice with MTB-induced renal injury were randomly assigned into control, MTB, mimic, inhibitor, inhibitor + ESAT6, and inhibitor + ESAT6 + TAK242 groups. Body weight, the ratio of kidney weight to body weight (Kw/Bw), blood urea nitrogen (BUN), and serum creatinine (Scr) of mice were measured. Flow cytometry was used to detect renal activation in mice. Expressions of miR-155 and ESAT6 were detected by quantitative real-time PCR (qRT-PCR), and Western blotting was used to examine the expressions of ESAT6, TLR4, and MyD88. Expressions of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and interferon-γ (IFN-γ) were measured by qRT-PCR and ELISA. Compared with the control group, the BUN and Scr levels as well as the expression levels of miR-155, TLR4, MyD88, TNF-α, IL-17, and IFN-γ increased, while Kw/Bw decreased in the MTB and mimic groups. In comparison with the MTB group, the above indexes except Kw/Bw were elevated in the mimic group, but were reduced in the inhibitor group, while the Kw/Bw dropped in the mimic group but increased in the inhibitor group. Compared with the inhibitor group, the Kw/Bw decreased while the rest of the indexes increased in the inhibitor + ESAT6 group. ESAT6 may induce renal injury by promoting miR-155 expression through the TLR-4/MyD88 signaling pathway in MTB-infected mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。