Extracranial arteriovenous malformations demonstrate dysregulated TGF-β/BMP signaling and increased circulating TGF-β1

颅外动静脉畸形显示 TGF-β/BMP 信号失调和循环 TGF-β1 增加

阅读:6
作者:Ting Wei, Gresham T Richter, Haihong Zhang, Ravi W Sun, Conor H Smith, Graham M Strub

Abstract

Extracranial arteriovenous malformations (AVMs) are characterized by anomalous arterial-to-venous connections, aberrant angiogenesis, local inflammation and hypoxia, and disorganized histological architecture; however, the precise molecular perturbations leading to this phenotype remain elusive. We hypothesized that extracranial AVM tissue would demonstrate deregulation of the TGF-β/BMP signaling pathway, which may serve as a potential target in the development of molecular-based therapies for AVMs. AVM tissue was harvested during resection from 10 patients with AVMs and compared to control tissue. Blood was collected from 14 AVM patients and 10 patients without AVMs as controls. Expression of TGF-β/BMP pathway components was analyzed using RT-PCR, western blotting, and immunohistochemistry. Circulating levels of TGF-β1 were analyzed by ELISA. Paired t tests were utilized to perform statistical analysis. The mRNA levels of TGF-β1, ALK1, Endoglin (ENG), Smad6, Smad7, and Smad8 were significantly elevated in AVM tissue when compared to controls. Protein levels of TGF-β1 and Smad3 were elevated in AVM tissue while protein levels of BMP-9, ALK1, Smad1, Smad6, and Smad8 were significantly decreased in AVMs. Immunohistochemistry demonstrated increased TGF-β1 in the perivascular cells of AVMs compared to normal controls, and circulating levels of TGF-β1 were significantly higher in AVM patients. Patients with AVMs demonstrate aberrant TGF-β/BMP expression in AVM tissue and blood compared to controls. Targeting aberrantly expressed components of the TGF-β/BMP pathway in extracranial AVMs may be a viable approach in the development of novel molecular therapies, and monitoring circulating TGF-β1 levels may be a useful indicator of treatment success.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。