Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis

两种反义 RNA 靶向转录调节因子 CsgD 来抑制 curli 合成

阅读:5
作者:Erik Holmqvist, Johan Reimegård, Maaike Sterk, Nina Grantcharova, Ute Römling, Eduard Gerhart Heinrich Wagner

Abstract

Escherichia coli produces proteinaceous surface structures called curli that are involved in adhesion and biofilm formation. CsgD is the transcriptional activator of curli genes. We show here that csgD expression is, in part, controlled post-transcriptionally by two redundant small RNAs (sRNAs), OmrA and OmrB. Their overexpression results in curli deficiency, in accordance with the inhibition of chromosomally encoded, FLAG-tagged CsgD. Downregulation of csgD occurs by a direct antisense interaction within the csgD 5'-UTR, far upstream of the ribosome-binding site (RBS). OmrA/B downregulate plasmid-borne csgD-gfp fusions in vivo, and inhibit CsgD translation in vitro. The RNA chaperone Hfq is required for normal csgD mRNA and OmrA/B levels in the cell, and enhances sRNA-dependent inhibition of csgD translation in vitro. Translational inhibition involves two phylogenetically conserved secondary structure modules that are supported by chemical and enzymatic probing. The 5'-most element is necessary and sufficient for regulation, the one downstream comprises the RBS and affects translational efficiency. OmrA/B are two antisense RNAs that regulate a transcription factor to alter a morphotype and group behaviour.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。