Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering

用于骨组织工程的多孔 dECM/PCL 支架的制造和评估

阅读:5
作者:Weiwei Wang, Xiaqing Zhou, Zhuozhuo Yin, Xiaojun Yu

Abstract

Porous scaffolds play a crucial role in bone tissue regeneration and have been extensively investigated in this field. By incorporating a decellularized extracellular matrix (dECM) onto tissue-engineered scaffolds, bone regeneration can be enhanced by replicating the molecular complexity of native bone tissue. However, the exploration of porous scaffolds with anisotropic channels and the effects of dECM on these scaffolds for bone cells and mineral deposition remains limited. To address this gap, we developed a porous polycaprolactone (PCL) scaffold with anisotropic channels and functionalized it with dECM to capture the critical physicochemical properties of native bone tissue, promoting osteoblast cells' proliferation, differentiation, biomineralization, and osteogenesis. Our results demonstrated the successful fabrication of porous dECM/PCL scaffolds with multiple channel sizes for bone regeneration. The incorporation of 100 μm grid-based channels facilitated improved nutrient and oxygen infiltration, while the porous structure created using 30 mg/mL of sodium chloride significantly enhanced the cells' attachment and proliferation. Notably, the mechanical properties of the scaffolds closely resembled those of human bone tissue. Furthermore, compared with pure PCL scaffolds, the presence of dECM on the scaffolds substantially enhanced the proliferation and differentiation of bone marrow stem cells. Moreover, dECM significantly increased mineral deposition on the scaffold. Overall, the dECM/PCL scaffold holds significant potential as an alternative bone graft substitute for repairing bone injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。