The myristoylated alanine-rich C kinase substrate differentially regulates kinase interacting with stathmin in vascular smooth muscle and endothelial cells and potentiates intimal hyperplasia formation

富含肉豆蔻酰的丙氨酸 C 激酶底物差异调节与血管平滑肌和内皮细胞中的 stathmin 相互作用的激酶,并增强内膜增生的形成

阅读:7
作者:Dan Yu, Ramkishore Gernapudi, Charles Drucker, Rajabrata Sarkar, Areck Ucuzian, Thomas S Monahan

Conclusions

MARCKS differentially regulates the KIS protein stability in VSMCs and ECs. The difference in stability is due to differential ubiquitination of KIS in these two cell types. The differential interaction of MARCKS and KIS provides a possible explanation for the observed difference in ubiquitination. The effect of MARCKS knockdown on KIS expression persists in vivo, potentiates recovery of the endothelium, and abrogates intimal hyperplasia formation.

Methods

Primary human coronary artery VSMCs and ECs were used for in vitro experiments. MARCKS was depleted by transfection with small interfering RNA. Messenger RNA was quantitated with the real-time reverse transcription polymerase chain reaction. Protein expression was determined by Western blot analysis. Ubiquitination was determined with immunoprecipitation. MARCKS and KIS binding was assessed with co-immunoprecipitation. Intimal hyperplasia was induced in CL57/B6 mice with a femoral artery wire injury. MARCKS was knocked down in vivo by application of 10 μM of small interfering RNA targeting MARCKS suspended in 30% Pluronic F-127 gel. Intimal hyperplasia formation was assessed by measurement of the intimal thickness on cross sections of the injured artery. Re-endothelialization was determined by quantitating the binding of Evans blue dye to the injured artery.

Objective

Restenosis limits the durability of all cardiovascular reconstructions. Vascular smooth muscle cell (VSMC) proliferation drives this process, but an intact, functional endothelium is necessary for vessel patency. Current strategies to prevent restenosis employ antiproliferative agents that affect both VSMCs and endothelial cells (ECs). Knockdown of the myristoylated alanine-rich C kinase substrate (MARCKS) arrests VSMC proliferation and paradoxically potentiates EC proliferation. MARCKS knockdown decreases expression of the kinase interacting with stathmin (KIS), increasing p27kip1 expression, arresting VSMC proliferation. Here, we seek to determine how MARCKS influences KIS protein expression in these two cell types.

Results

MARCKS knockdown did not affect KIS messenger RNA expression in either cell type. In the presence of cycloheximide, MARCKS knockdown in VSMCs decreased KIS protein stability but had no effect in ECs. The effect of MARCKS knockdown on KIS stability was abrogated by the 26s proteasome inhibitor MG-132. MARCKS binds to KIS in VSMCs but not in ECs. MARCKS knockdown significantly increased the level of ubiquitinated KIS in VSMCs but not in ECs. MARCKS knockdown in vivo resulted in decreased KIS expression. Furthermore, MARCKS knockdown in vivo resulted in decreased 5-ethynyl-2'-deoxyuridine integration and significantly reduced intimal thickening. MARCKS knockdown enhanced endothelial barrier function recovery 4 days after injury. Conclusions: MARCKS differentially regulates the KIS protein stability in VSMCs and ECs. The difference in stability is due to differential ubiquitination of KIS in these two cell types. The differential interaction of MARCKS and KIS provides a possible explanation for the observed difference in ubiquitination. The effect of MARCKS knockdown on KIS expression persists in vivo, potentiates recovery of the endothelium, and abrogates intimal hyperplasia formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。