Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas

人类气管基底细胞的细胞表面标志物分析揭示了不同的亚群,确定了 MST1/MSP 是有丝分裂原信号,并确定了肺鳞状细胞癌的新生物标志物

阅读:6
作者:Emily Van de Laar, Monica Clifford, Stefan Hasenoeder, Bo Ram Kim, Dennis Wang, Sharon Lee, Josh Paterson, Nancy M Vu, Thomas K Waddell, Shaf Keshavjee, Ming-Sound Tsao, Laurie Ailles, Nadeem Moghal

Background

The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior.

Conclusion

This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.

Methods

We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS

Results

We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。